Agronomic and Soil Quality Benefits of Cover Crops

Craig F. Drury*, W. Dan Reynolds*, Xueming Yang*, Chin Tan*, and Neil McLaughlin**

Agriculture & Agri-Food Canada
* Harrow, Ontario, Canada
** Ottawa, Ontario, Canada
OUR GOAL

Manage agricultural land to:

- Optimize crop yield and quality
- Minimize environmental N losses
- Maintain and/or improve soil quality
Cover Crops

Benefits:

1. Increased crop yields.
2. Ability to capture residual N.
3. Ability to add N to soils through nitrogen fixation.
4. Improved physical quality (water storage, transmission).
Brookston clay loam soil
Crop Rotations

Continuous crops
- Corn
- Soybean
- Winter Wheat
- Winter Wheat + Red Clover

2 year Rotations
- Corn-Soybean
- Winter Wheat-Soybean
- Winter Wheat+Red Clover –Soybean

3-year Rotations
- WW-Corn-Soybean
- WW+RC-Corn-Soybean
- Corn-Soybean-Soybean

4-Year Rotations
- WW-C-S-S
- WW+RC-C-S-S
Soil Inorganic N – Spring (0-60 cm depth)

Soil Inorganic N (kg N ha⁻¹)

Control
Red Clover

WW
WW-S
WW-C-S
Cumulative Winter Wheat Yields

- Continuous WW
- WW+Red clover
- WW-C-S-S
- WW+RC-C-S-S

Year: 2002 to 2012

Cumulative Winter Wheat Yield (t ha\(^{-1}\))

Yield levels: 0 to 40
Cumulative Corn Grain Yields

- **Cumulative Corn Grain Yield (t ha⁻¹)**

- **Continuous corn**
- **Corn-Soybean**
- **W-C-S-S**
- **W+RC-C-S-S**

Data for the years 2002 to 2012 is shown, with cumulative yields plotted over time for each treatment.
Soybean Yields

- **Continuous Soybean**
- **WW-C-S**
- **WW+RC-C-S**

Soybean Yield (t ha$^{-1}$)

- 70 bu/ac
- 50 bu/ac
- 25 bu/ac
Cumulative Soybean Yields

Cumulative Soybean Yield (t ha$^{-1}$)

Continuous Soybean
WW-C-S-S
WW+RC-C-S-S

Soybean Yield (t ha$^{-1}$)

Continuous Soybean
WW-C-S
WW+RC-C-S
Surface Runoff & Tile Drainage Volume

Cumulative Flow (kL ha\(^{-1}\))

<table>
<thead>
<tr>
<th>Surface Runoff</th>
<th>Tile Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cover crop + CDS</td>
<td>No cover crop + Tile drainage</td>
</tr>
<tr>
<td>Cover crop + CDS</td>
<td>Cover crop + Tile drainage</td>
</tr>
</tbody>
</table>

1999 2000 2001 2002 2003 2004 2005
Nitrate Loss

Surface Runoff

- No Cover crop + CDS
- Cover crop + CDS
- No Cover crop + Tile drainage
- Cover crop + Tile drainage

Tile Drainage

Cumulative Nitrate Loss (kg N ha⁻¹)
Saturated Hydraulic Conductivity (ksat)

- No CC+CDS
- CC+CDS
- No CC+Tile drainage
- CC+Tile drainage
Cover crop study (2012)

Treatments

- Control (no cover crop)
- Oats (56 lbs/ac)
- Nitro radish (12 lbs/ac)
- Oilseed radish (12 lbs/ac)
- Yellow mustard (12 lbs/ac)

Planting date: Aug. 20, 2012
SAGES
OATS
2012
SAGES
NITRO
RADISH
2012
Cover crop biomass - 2012

Cover crop biomass (t ha⁻¹)

- Yellow mustard
- Oats
- Oilseed radish
- Nitro radish

Agriculture and Agri-Food Canada
Agriculture et Agroalimentaire Canada
Cover crop N uptake - 2012

Cover crop N content (kg N ha\(^{-1}\))

- Yellow mustard
- Oats
- Oilseed radish
- Nitro radish

[Bar chart showing the N uptake of different cover crops]
Cover crop benefits

- Enhanced crop yields (especially corn)
- Capture and release of N to the following crop
- Reduced surface runoff
- Improved saturated hydraulic conductivity
- Increased C and N returns to soil
- Reduced nitrate leaching losses

- Also note the sizeable benefit of crop rotations in general vs. continuous cropping.
Acknowledgements

Appreciation is expressed to the organization which helped to fund this research including the AAFC SAGES and Green plan Programs

To: Dr. Tom Oloya, John Goerzen, Steve Burtt, Scott Patterson, Joann Gignac for their expert technical assistance.
Future Research

Study 1: Rotations with/without red clover

- Crop yields & N uptake
- Soil organic carbon (SOC)
- Inorganic N leaching/recovery
New Cover Crop Study (2)

Objectives

To determine:

1) Crop yields and quality.

2) Soil physical quality (soil strength/hardness, soil water storage and transmission, soil aeration, soil physical quality index values);

3) SOC & SON amounts, types and profile distributions;

4) Nitrate leaching in the soil profile;

5) Reductions in synthetic fertilizer requirements;
New Cover Crop Study (2)

Control - No cover crop

Single Species
- Nitro radish (NR)
- Sesbania (SE)
- Phacelia (PH)
- Red clover (RC)

Mixtures
- Nitro radish + phacelia
- Nitro radish + sesbania
- Phacelia + red clover
- Nitro radish + sesbania + phacelia + red clover